

Institute of Mechanical Sciences and Industrial Applications

Modélisation et auralisation du bruit éolien

Benjamin Cotté, David Mascarenhas et Olivier Doaré

Institute of Mechanical Sciences and Industrial Applications (IMSIA) ENSTA Paris, Institut Polytechnique de Paris benjamin.cotte@ensta-paris.fr

Assises nationales de la qualité de l'environnement sonore 27 septembre 2022, Paris

Contexte : auralisation des éoliennes

- Bruit éolien : signature acoustique particulière
- Auralisation : procédé visant à recréer un environnement sonore
 - permet de réaliser des tests perceptifs
 - peut être utilisée dans des applications de réalité virtuelle
- Thèse de David Mascarenhas : fait partie du réseau européen VRACE : *Virtual Reality Audio for Cyber Environments*

Objectifs

Développer un outil de synthèse du bruit éolien par modélisation physique

- des sources de bruit d'origine aérodynamique
- de la propagation du son dans l'atmosphère

Modélisation des sources aéroacoustiques

Sources de bruit d'origine aérodynamique calculées avec la théorie d'Amiet :

- bruit d'impact de turbulence (bruit de bord d'attaque) : paramètre d'entrée : spectre de turbulence en amont
- bruit de bord de fuite pour une couche limite turbulente paramètres d'entrée : paramètres de couche limite

Modélisation de la propagation dans l'atmosphère

Phénomènes physiques calculés par un code d'équation parabolique :

- réflexion sur un sol absorbant
- réfraction due aux gradients verticaux de température et de vent
- absorption atmosphérique
- diffusion par la turbulence atmosphérique (modèle semi-empirique Harmonoise)

Lamancusa [2009]

 V_{0x} , m.s⁻¹

Hypothèses :

- Sol plan et homogène
- On néglige l'effet du sillage sur la propagation (sous le vent)

Colas et coll. [2022]

Modèle de source étendu (monopôles en rotation)

Méthode de synthèse sonore

Conversion d'un spectre dans le domaine fréquentiel à un signal temporel

Mascarenhas et coll. [JASA-EL 2022]

Méthode de synthèse sonore

- 1 grain = 1 segment pour un pas angulaire $\Delta\beta$
- Présence de clics entre 2 grains ⇒ technique de fondu-enchaîné pour lisser les transitions entre les grains

Cas-tests

Paramètres de calcul pour les synthèses sonores :

1 seule éolienne de 2,3 MW :

H = 80 m et RD = 93 m

- spectres calculés entre 50 Hz et 5 kHz
- *x_R* ∈ [500, 1000] m et *z_R* = 2 m
- impédance de sol herbeux (Miki)
- profil de vent $U(z) = U_{ref} \left(\frac{z}{z_{ref}}\right)^m$ avec $U_{ref} = 8$ m/s à $z_{ref} = 80$ m et m = 0, 3
- 3 niveaux de turbulence

Cas-test A : avec et sans les effets de propagation

 $x_R = 500 \,\mathrm{m}$, turbulence modérée

Cas-test A : avec et sans les effets de propagation

 $x_R = 500 \,\mathrm{m}$, turbulence modérée

A1-1 : $\theta = 0^{\circ}$ en champ libreA1-2 : $\theta = 80^{\circ}$ en champ libreA1-3 : $\theta = 180^{\circ}$ en champ libre

A2.1 : $\theta = 0^{\circ}$ avec effets de propagation A2-2 : $\theta = 80^{\circ}$ avec effets de propagation A2-3 : $\theta = 180^{\circ}$ avec effets de propagation

B. Cotté, D. Mascarenhas, O. Doaré

IMSIA - ENSTA Paris

Cas-test E : effet de la zone d'ombre

 $\theta = 180^{\circ}$, turbulence modérée

A2-3 : $x_R = 500$ m avec effets de propagation E1-1 : $x_R = 800$ m avec effets de propagation

E1-2 : $x_R = 1000$ m avec effets de propagation

Cas-test E : effet de la zone d'ombre

Niveau de pression relatif au champ libre ΔL pour $\theta = 180^{\circ}$:

- tirets : faible niveau de turbulence
- points : fort niveau de turbulence

$$L_{p}(f,\beta) = L_{W}(f,\beta) - 10 \log_{10}(4\pi R(\beta)^{2}) + \Delta L(f,\beta) - \alpha(f)R(\beta)$$

 $x_{B} = 800 \,\mathrm{m}$

 $x_R = 1000 \,\mathrm{m}$

Quelques perspectives

- Validation physique du modèle par comparaison aux mesures du projet ANR PIBE
- Validation perceptive du modèle dans la cabine basse fréquence du LMA à Marseille dans le cadre du projet ANR RIBEoIH

Vue du site éolien de la campagne du projet ANR PIBE (Mascarenhas *et al.* [Internoise 2022])

Sound synthesis method

Grain duration $T_{\Delta\beta}$

$$T_{\Delta\beta} = \frac{\Delta\beta}{\Omega} + \frac{\Delta R}{c_0} = \frac{\Delta\beta}{\Omega} + \frac{R(\beta_n) - R(\beta_{n-1})}{c_0}$$

- *R*(β_n) : distance source-receiver at angular position β_n
- number of samples N_{Δβ} varies between grains

Overlap amount Ψ

$$\Psi = rac{W_l}{\min(N_{\Deltaeta})} \quad ext{with} \quad 0 \leq w_l \leq \min(N_{\Deltaeta})$$

w1 : overlap length

Optimal values : $\Psi = 100\%$ and $N_{\beta} = 36$ (Mascarenhas *et al.* [JASA-EL 2022])

