

Université Gustave Eiffel

RSTV FR CNRS 2488

CONSTATATION DES NIVEAUX D'ÉMISSION SONORE DES VÉHICULES

Eléments de métrologie du bruit appliquée au contrôle du bruit en mouvement

Joël Lelong – Université Gustave Eiffel UMRAE

- Début 2020 : 6 industriels consultés et initialement intéressés par la démarche
- Printemps 2020 : rédaction du protocole des essais sur piste d'essai
- **Eté 2020 :** après une série d'échanges techniques, seuls trois industriels ont souhaité poursuivre
- Eté 2020 : choix des sites pour chacune des 7 collectivités participantes
- Automne 2020 : 1^{ère} série d'essais sur piste
- **Printemps 2021 :** 2^{ème} série d'essais sur piste
- Eté 2021 : Rédaction du protocole d'évaluation sur site
- 3 janvier 2022 : parution du décret autorisant l'installation des radars sur voirie
- Mars juin 2022 : essais sur site

de la Qualité de l'Environnement

2

INVESTISSONS

CidB

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

ÉDITION

ð

Ð

Sonore

Assises Nationale

• A venir : homologation des matériels par le LNE + essais sur site avec verbalisation

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

La mesure acoustique : les obstacles

• Précision de la mesure acoustique

- Véhicule isolé : évaluer l'incertitude de la mesure
- Correction de distance
- Détection des faux positifs
 - Véhicule non bruyant qui serait verbalisé
- Détection des faux négatifs
 - Véhicule bruyant qui ne serait pas verbalisé
- Véhicules successifs ou croiseurs
 - Sélectivité spatiale
- Sources de bruit parasites (ponctuelles ou continues)
 - Critère d'émergence
- Conditions météorologiques particulières
 - Pluie, vent violent, ...

CidB

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

- Sources parasites présentes dans la zone de mesure
 - La résolution du système doit être suffisante pour séparer ces sources
 - Ex : 2 véhicules qui se suivent
- Sources parasites en dehors de la zone de mesure
 - Ces sources ne doivent pas perturber la mesure du bruit émis par un véhicule se situant dans la zone de mesure

Tests sur piste d'essai

- Objectif :
 - Evaluation des performances acoustiques des prototypes retenus pour l'expérimentation
- Où et quand ?
 - 2 sessions de trois semaines (automne 2020 et printemps 2021)
 - Piste d'essais de l'Université Gustave Eiffel (Nantes)

CidB

Centre d'info sur le Bruit

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Liberté Égalité

Tests sur piste d'essai – mode opératoire

umr C e

7

- 1 seul microphone
 - Niveau max de bruit au passage : OK
 - Localisation impossible

Source : Canada News

Plusieurs microphones : le goniomètre acoustique \bullet

Source : Raytheon

Détection acoustique : quelle technologie ?

• Plusieurs microphones : l'antenne acoustique

Source : M.-A. Pallas - UGE

Liberté Égalité

L'antenne acoustique (suite)

Source : M.-A. Pallas - UGE

12

ne

L'antenne acoustique (suite)

• Influence de la fréquence :

de la Qualité de l'Environnement

INVESTISSONS [D

ENVIRONNEMENT,

ÉDITION

ð

CidB

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Ð

Sonore

Assises Nationale

- La sélectivité de l'antenne est plus importante aux fréquences élevées qu'aux basses fréquences.
- Limitation en basse fréquence (garantie d'une bonne séparation des sources) : liée à la dimension de l'antenne.
- Limitation en haute fréquence : liée à l'espacement entre les microphones.
- Sources en mouvement :
 - Effet Doppler

9° ÉDITION Investissons [dans L'environnement sonore

Un exemple de radar acoustique : le dispositif Noivelcam

umr **Ce**

(a) Front view

(b) Rear view

(c) Side view

Source : Agha & al - 2016

αe

Source : Agha & al - 2016

15

de la Qualité de l'Environnement Sonore

INVESTISSONS [DANS L'ENVIRONNEMENT SONORE

9° ÉDITION

CidB Centre d'Inform sur le Bruit

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Liberté Égalité

Assises Nationales

αe

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE Literit Faciniti

Fig. 10. Screenshots extracted from wide angled video of the true captured cases recorded during in-situ deployment.

(d)

(c)

αe

Source : Agha & al - 2016

17

αe

Assises Nationales de la Qualité de l'Environnement Sonore

INVESTISSONS [DANS

CidB Centre d'info sur le Bruit

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE Literit Agaité Presenti

9° ÉDITION

SONOR

L'ENVIRONNEMENT

Fig. 11. Screenshots extracted from wide angled video of the false captured cases recorded during in-situ deployment.

Source : Agha & al - 2016

Merci de votre attention

de la Qualité de l'Environnement Sonore

INVESTISSONS [DANS L'ENVIRONNEMENT SONORE

9° ÉDITION

CidB Centre d'Inform sur le Bruit

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Liberté Égalité

Assises Nationales

joel.lelong@univ-eiffel.fr